Welcome to MLRG @ Binghamton

Welcome to the machine learning research group at Binghamton! Our group works broadly on designing machine learning models for complex, relational, unstructured, and heterogeneous data. Our group focuses both on designing novel algorithms for such complex interconnected data and applications of these algorithms on real-world data.

Specifically, our group works on statistical relational learning, deep learning, probabilistic graphical, and latent variable models. We demonstrate the utility of these models on applications including smart energy, computational social science, education, social media, and urban computing data. For a complete list of ongoing research projects, see our research page.

We are looking for passionate PhD, Masters and Undergraduate students to join the team!

News

Sep 2020

Our paper on predicting emergency resolution time using deep learning has been accepted for publication at IEEE CPSCom!

Sep 2020

Our paper on a structured and linguistic approach to understanding recovery and relapse in AA has been accepted for publication in ACM Transactions on the Web (TWEB)!

July 2020

Our research on understanding the societal impact of COVID-19 has been accepted to AI for Social Good Workshop. Check out our paper here. Check out the NEWS coverage here.

July 2020

Our research on designing ensemble regression models for predicting confirmed COVID-19 cases has been accepted to AI for Social Good Workshop. Check out the NEWS coverage here.

April 2020

Prof. Arti Ramesh and Prof. Anand Seetharam have been awarded a SUNY seed grant to understand the societal impact of COVID-19 from social media data!

April 2020

Our work on understanding socio-economic impact of COVID during its early days is now on Arxiv!

March 2020

Yue Zhang passes her prospectus with flying colors! Congratulations, Yue!

February 2020

My PhD student Yunlong Xu passes RPE. Congrats Yunlong!

January 2020

Two papers accepted in ECAI 2020! Our papers on learning fairness-aware relational structures and mixed-membership stochastic blockmodels with interpretable structured priors got accepted for publication in ECAI 2020. Congrats Yue!

... see all News